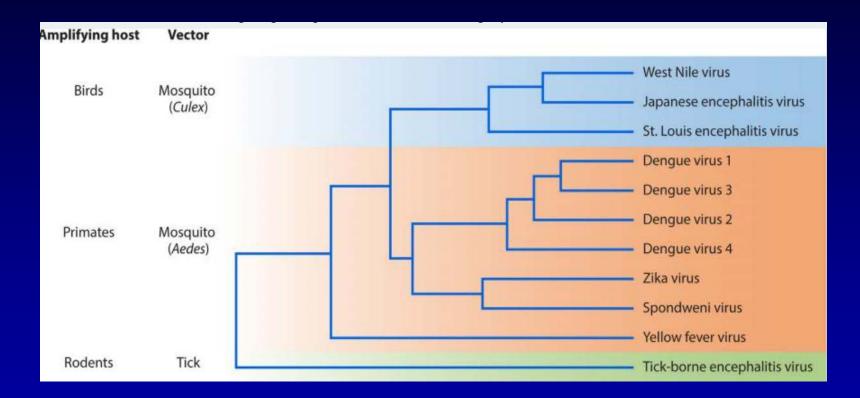
Dengue Epidemiology and Vaccine Development

ACIP February 23, 2017

Steve Waterman, MD, MPH

Chief, Dengue Branch Centers for Disease Control and Prevention San Juan, Puerto Rico


Overview

- Dengue Viruses
- The Need for a Vaccine
 - Clinical disease burden and lack of primary prevention tools
 - Vaccines constructs and candidates
 - Epidemiologic challenges to vaccine evaluation
 - Results of lead-candidate vaccine trial
- Considerations

- Belongs to Flavivirus genus of the Flaviviridae Family
- Four antigenically distinct serotypes (DENV-1, DENV-2, DENV-2, DENV-4)
- Enveloped
- 10.7 kb ssRNA genome
- 3 structural proteins: E, C, M

Phylogeny of Important Flaviviruses

Dengue Virus Transmission

Mosquito acquires virus during feeding virus replicates in mosquito

Mosquito infects susceptible person

Mosquito infects humans – virus in lymph nodes, other organs blood

Mosquito acquires virus during feeding

virus replicates in mosquito

Dengue Global Burden

- Emerging disease, both epidemic and endemic in tropical and sub-tropical regions
- Estimated global burden
 - 390 million infections (285M-525M)
 - 96 million clinical infections
 - 2 million severe dengue cases
 - 20,000 deaths

Severe dengue

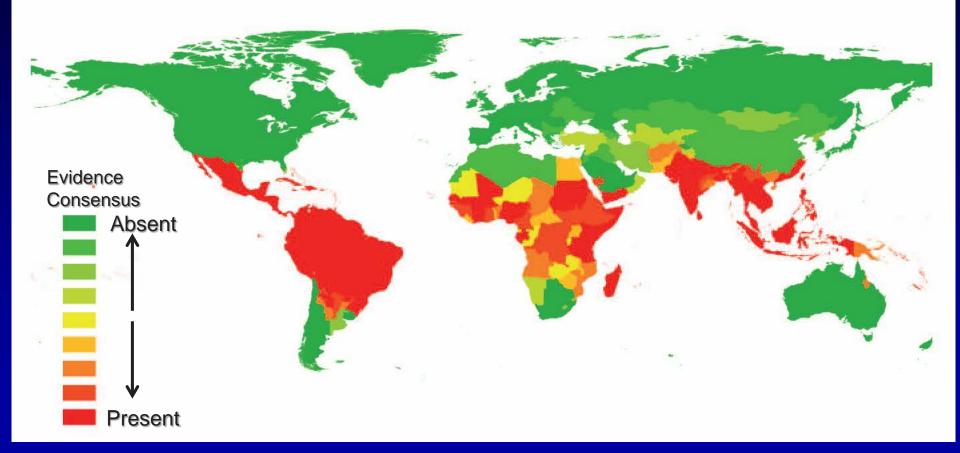
- Shock, hemorrhage or severe organ involvement
- Shock: systemic vascular permeability leading to vascular hypovolemia and dengue shock syndrome
- Hemorrhage: bleeding manifestations due to combined effects of thrombocytopenia and deranged hemostasis
- Severe organ impairment: Encephalitis, Hepatitis, Other

Risk factors for severe dengue

- Secondary infections
- Virus strain
- Host genetics
- Co-morbidities
- Young age
- Female

Dengue pathogenesis

- Viral burden, often linked to heterologous non-neutralizing antibody
- Elevated concentration of inflammatory mediators, cytokines and chemokines
- Immune response thought to promote capillary permeability – exact mechanism unclear
- Loss of essential coagulation proteins probably plays a major role in coagulopathy


Dengue Vaccine Status

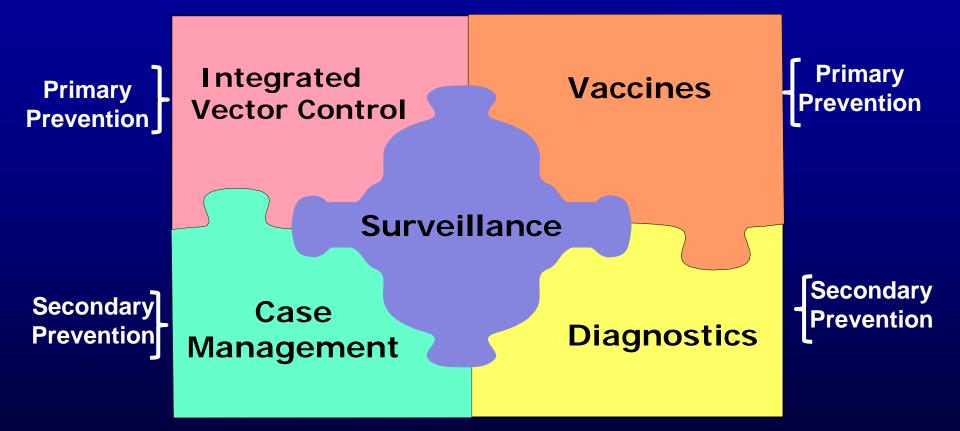
- Registered: one vaccine in several countries
- Multiple other candidates
- Vaccine types: multiple formats
- Vaccine performance: multiple trials
- Indications: pediatric and adult
- Diagnostics
 - acute disease very good
 - vaccine antibody need better assays

Why a Dengue Vaccine ?

- Large disease and economic burden
- Primary prevention
 - vector control not effective the last 50 years
 - need effective primary prevention tool
- Secondary prevention
 - medical management of severe dengue
 - vaccine would significantly reduce health care resources required for secondary prevention

Dengue Globally Certainty of Information

Adapted from Bhatt, S et al Nature 2013; 496: 504-507


Dengue Burden

Estimated burden of dengue, by continent, 2010

Continent	Dengue	Inapparent infections	
	Millions (credible interval)	Millions (credible interval)	
Africa	15.7 (10.5-22.5)	48.4 (39.3-65.2)	
Asia	66.8 (47.0-94.4)	204.4 (151.8-273.0)	
Americas	13.3 (9.5-18.5)	40.5 (30.5-53.3)	
Oceana	0.18 (0.11-0.28)	0.55 (0.35-0.82)	
Global	96 (67.1-135.6)	293.9 (217.0-392.3)	

Bhatt, S et al Nature 2013; 496: 504-507

The Dengue Prevention Framework

Adapted from: Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. New Edition. WHO, 2009 Global Strategy for Dengue Prevention and Control 2012-2020. WHO, 2012

Dengue Vaccines

Post-Infection Antibodies Protect Natural History Studies

Neutralizing antibodies

- 50-70 % reduction in viral plaques (PRNT₅₀₋₇₀)
- Cell culture adapted viruses
- Non-FC receptor bearing cells used in assays

Homotypic Antibodies

- Protect against homologous DENV disease / infection (Sabin 1952; Halstead 1974)
- Cohorts followed over multiple years

Heterotypic Antibodies

- Cross protection against disease ~ 6 months (Sabin, 1952)

- Cross protection against infection may last longer

Problems with Antibodies Antibody Dependent Enhancement of Infection (ADE)

Enhanced infection in presence of heterotypic (non-neutralizing) antibodies

- In vitro observations
- Chimpanzee studies with passively transferred antibodies
- AG129 interferon deficient mouse model
- Severe dengue (DHF) epidemiologic observations
 - DHF among infants with 1st DENV infection in presence of passively acquired maternal antibody
 - Increased risk for DHF with 2° infections

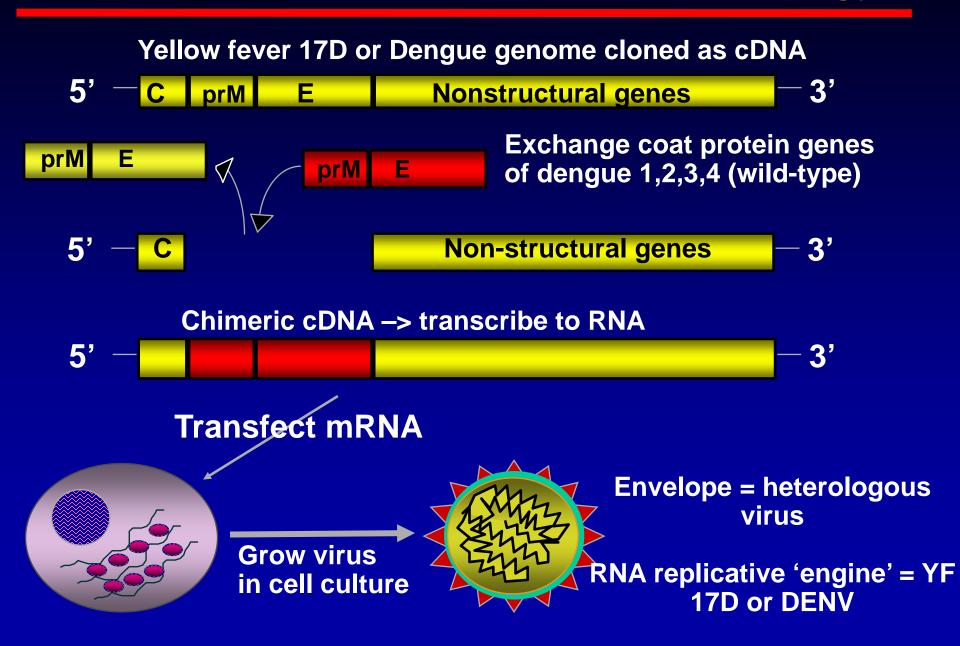
The Ideal Product Profile

- **Formulation:** Tetravalent protection (DENV 1- 4)
- Administration: Delivery over 4 6 months and during established immunization visits
- Storage: off the cold chain
- Immunogenicity: high with < 3 doses</p>
- Protection: > 85% against dengue (dengue fever) + dengue virus (DENV) infection
 - Long-term protection: w/o booster doses

Types of Dengue Vaccine Candidates

Present Generation (commercial development)

- Live attenuated
 - Cell culture adapted
 - Infectious clones
 - -chimeric viruses
 - -attenuation by site directed mutagenesis
- Recombinant subunits of DENV envelope proteins
- Inactivated dengue viruses


Next Generation (in development)

- Viral vectored subunits
- VLPs
- Peptide chimeras
- DNA

Dengue Vaccine Candidates

Producer (Developer)	Vaccine Type	Clinical Trial			
		Phase I	Phase II	Phase III	
Sanofi Pasteur (Acambis)	Live attenuated - chimera 17D yellow fever + DENV				
Takeda (CDC, Invirogen)	Live attenuated - chimera DENV-2 + DENV 1,3, 4				
Butantan (NIAID)	DENV attenuated - mutations + DENV/DENV chimera				
GSK (WRAIR)	Cell culture derived, inactivated	\rightarrow	Þ		
MERCK (Hawaii Biotech)	Envelop subunits of DENVs		Þ		

Chimeric Flavivirus Vaccine Technology

Dengue Vaccine Evaluation

Lack of Good Animal Models

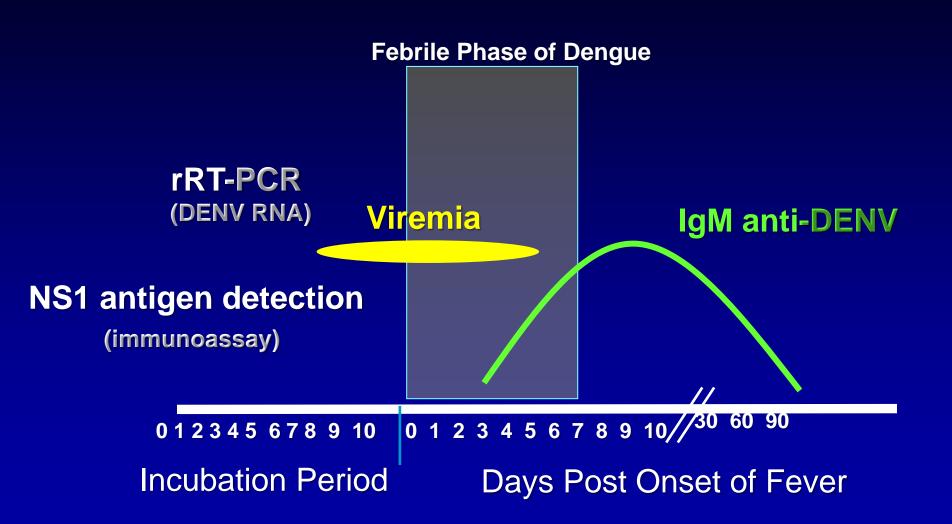
- Macaque model short incubation period, infection only, no disease, does not readily predict immunogenicity in humans
- AG 129 interferon deficient mouse model short incubation period, infection, disease (DHF)
- Human challenge model has been developed but rarely used
- Human clinical trials required to determine performance of dengue vaccine candidates

Dengue Epidemiology A Challenge to Vaccine Evaluation

Dengue is an acute febrile illness (AFI) syndrome

- Only defined by diagnostic testing
- Other AFI's in dengue endemic areas: malaria, influenza, leptospirosis, meliodosis, hepatitis A
- Incidence: high endemic + cyclical epidemics
- Highly seasonal
- Several circulating virus types (serotypes)
- Peak age of incidence varies by region
- Severe dengue is natural progression of disease

Guidelines for Clinical Evaluation of Dengue Vaccine in Dengue Endemic Areas. Vaccine 2008;26:4113-4119

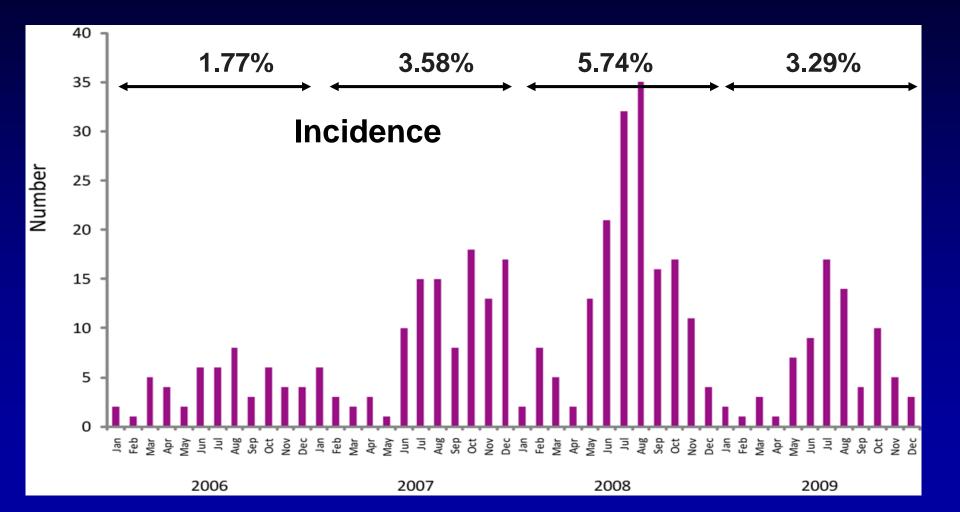

Dengue Epidemiology Challenge to Vaccine Efficacy Trials

- Need for large population base because of focal nature of dengue
- Febrile illness surveillance to identify DF cases and determine:
 - Age-specific disease incidence
 - Determine variation in incidence over several seasons (~3 yrs)

Molecular and immuno-diagnostic testing for dengue (DF) = febrile illness >2 days + DENV viremia detected by PCR or NS1 antigen

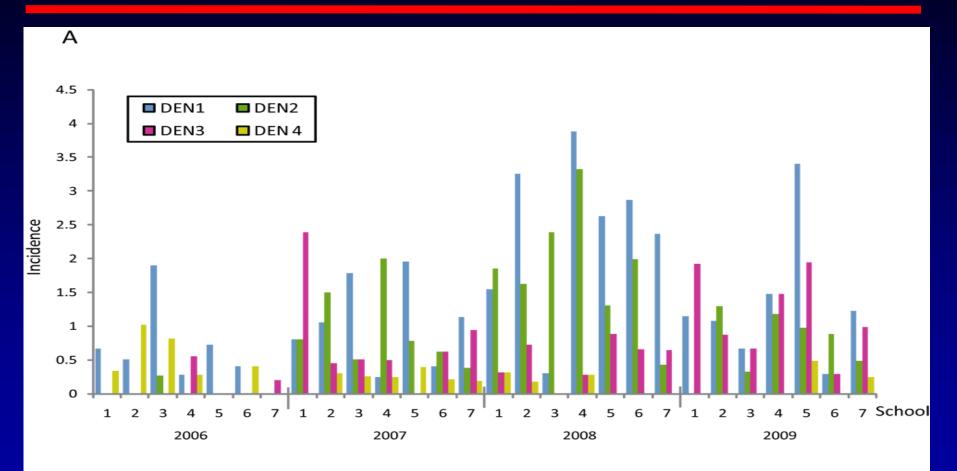
Guidelines for Clinical Evaluation of Dengue Vaccine in Dengue Endemic Areas. Vaccine 2008;26:4113-4119

Dengue – Diagnostic Events


Dengue Vaccine Efficacy Trials

Dengue in Ratchaburi, Thailand Propsective Cohort Study, 2006 - 2009

- ~3,000 children ages 3-13, annual replacement 4-5 yo
- Active surveillance for absences / febrile episodes in schools and home visits during vacations
- Fever = 37.5°C oral irrespective of duration
- 0.53 febrile episodes/child/ year
- Clinic visits by day post fever onset = 53% day 1-2, 30% day 3-4, 14% day 5-6
- Clinic evaluation = blood draw + follow-up blood draw
- Diagnostic testing = DENV by PCR, IgM anti-DENV


From Sabchareon, A et al. PLoS NTD 2012; 6: e1732

Dengue Cases by Month, Ratchaburi, 2006 - 2009

Adapted from Sabchareon, A et al. PLoS NTD 2012; 6: e1732

Dengue Virus Serotypes, Ratchaburi 2006 - 2009

All years (%): DENV-1 (43); DENV-2 (29); DENV-3 (20); DENV-4 (8) Adapted from Sabchareon, A et al. PLoS NTD 2012; 6: e1732

Disease Severity, Ratchaburi, Thailand 2006 - 2009

Classification by 1997 WHO Case Definitions

Severity	Number	Percent	
Undifferentiated Fever (UF)	210	53.3	
Dengue Fever (DF)	142	36.0	
Dengue Hemorrhagic Fever (DHF)	42	10.7	
Total	394	100	

Hospitalization: UF= 15%; DF = 84%; DHF = 100%

86.3% = 2° infections, no association with severity

No association of DENV serotype and severity

From Sabchareon, A et al. PLoS NTD 2012; 6: e1732

Sanofi Dengue Vaccine Efficacy Trials WHO Guidelines*

- Randomized, blinded, placebo-controlled (2:1)
- Ages: 2-16 years (highest disease incidence)
- 3 doses: given at 0, 6 &12 months
 - Vaccine tetravalent, live, attenuated
 - Placebo normal saline vaccine diluent
- End point: Symptomatic, confirmed dengue fever
 - Clinical acute febrile illness + PCR-detected viremia
- Follow-up: 25 months total (13 months after last dose)
- Longer-term follow-up: 48 months

Guidelines for the clinical evaluation of dengue vaccines in endemic areas http://www.who.int/immunization/documents/WHO_IVB_08.12/en/Capeding MR, et al Lancet 2014; 834 1358-1365

Sanofi Dengue Vaccine Efficacy Trials (CYD)

Site(s)	Design	Ν	Ages (yrs)	Pre-existing DENV antibody (%)
Ratchaburi, Thailand	Phase 2B	4002	4-11	69.5
Asia – Indonesia, Malaysia, Philippines, Thailand, Vietnam	Phase 3	10,275	2-14	67.5
Latin America Colombia, Brazil, Mexico, Puerto Rico, Honduras	Phase 3	20,869	9-16	79.4

From: Sabchareon, A et al. Lancet 2012; 380:1559-1567; Capeding MR, et al Lancet 2014; 834: 1358-1365; Villar L, et al. NEJM 2015: 372 113-123.

Results of Efficacy Trials Sanofi Vaccine (per protocol results)

DENV specific	Phase IIB–Thailand N= 4,002		Phase III–Asia N= 10,275		Phase III–Latin America N= 20,869	
	Efficacy	95% Cl	Efficacy	95% CI	Efficacy	95% CI
All DENV's	30.2	-13–57	56.5	44–66	60.8	52-68
DENV 1	55.6	22–84	50.0	25–67	50.3	29–65
DENV 2	9.2	-75–51	35.0	-9–61	42.3	14–61
DENV 3	75.3	-38–100	78.4	53–91	74.0	62–82
DENV 4	100	25–100	75.3	55–87	77.7	60–88

Sabchareon, A et al. Lancet 2012; 380:1559 1567 Capeding MR, et al Lancet 2014; 834: 1358 1365 Villar L, et al. NEJM 2015: 372 113 123

Clinical Outcomes of Dengue

- No differences between vaccine and placebo groups in clinical features or severity of dengue
- Duration of clinical syndrome, fever or hospitalization
- Bleeding, plasma leakage, thrombocytopenia, shock, organ impairment

Sanofi Vaccine Trials Other Outcomes

- No safety signals observed in short-term
 - Long-term, blinded follow-up ongoing
- Poor immunogenicity and protection in children without previous DENV infection

Conclusions

- Tetravalent, DENV chimeric yellow feverdengue vaccine (CYD) shown to be safe when administered to children living in dengue endemic area and high background of previous DENV infection
- However, vaccine showed only partial protection against dengue with lowest protection against DENV-2, followed by DENV-1, and highest protection against DENV-3 and 4